[石家庄二模]石家庄市2024年普通高中学校毕业年级教学质量检测(二)文数试题

[石家庄二模]石家庄市2024年普通高中学校毕业年级教学质量检测(二)文数试题正在持续更新,目前2026金太阳答案网为大家整理了相关试题及答案,供大家查缺补漏,高效提升成绩。

参考答案及深度解析【解1(1)由题意,得f'(x)=(2x-1)(x-a)(1分)化为直角坐标方程为x-√3y-3=0.(3分)点P(0,-√3)的坐标满足此方程,点P在直线1上当f'(x)的零点x=a落在区间(1,2)内时,函数f(x)在区间(4分)[1,2]上就不是单调函数,(2)曲线C的普通方程为x2+y2=4①,.实数a的取值范围是{ala≤1或a≥2}.(3分)(2)由题意知,不等式f(x)≥g(x)在区间[1,e]上有解,即x-2,x2-2x+a(lnx-x)≥0在区间[1,e]上有解.直线1的参数方程为(t为参数)②,令p(x)=-lnx,xe[1,e],则p(x)=1-1--l≥0,=-5+2p(x)=x-nx在[1,e]上单调递增,把②代入①得2-√3t-1=0,4>0.(6分)p(x)≥p(1)=1,.x-lnx>0,由题意设1PAl=t,I,IPB1=2I,且t1与t2异号.(7分)a产在区间1]上有解由根与系数的关系得t2=-1,t,+t2=√3,(5分)1111It1+1121-n则h'(x)=x-1(x+2-2nx)令h(x)=-2xlt tzllt tl(6分)(x-In x)2xe[1,e],.x+2>2≥2lnx,√+ta)-4=万(10分)lt tl∴.h'(x)≥0,h(x)在[1,e]上单调递增,(8分)23.【命题立意】本题难度适中,主要考查绝对值三角不等式、基当xe[1,e]时,(x)=h(e)=e(e-2)(11分)本不等式,考查转化与化归思想,体现了逻辑推理、数学运e-1ae(e-2)算等核心素养,意在让部分考生得分(1)【解f(x)=12x+al+12x-b1+2≥1(2x+a)-(2x-b)1+2=e-1|a+b1+2,(2分)实数。的取值施因是(,二(12分)所以1a+b1+2=3,即a+b=±1(4分)(2)儿证明】由(1)及题意知a+b=1,位关键点拨解本题的关键是将问题转化为α≤-2城在x-ln x则原不等式等价为(任日≥2,即+-≥9.(6分)0区间[1,e]上有解,构造函数h(x)=ln求出其最x2-2x而4b×a=9大值,aba b222.【命题立意】本题难度适中,主要考查极坐标方程与直角坐当且仅当a=,6=3时,等号成立),故原不等式成立。标方程的互化、参数方程与普通方程的互化、直线与曲线的(10分)位置关系,体现了数学运算、逻辑推理的核心素养,意在让部分考生得分方法总结绝对值不等式的解法有三种:方法一:利用绝对值不等式的几何意义求解,体现了数形【解1(1)~直线1的极坐标方程为oee+写)=,结合的思想;方法二:利用“零点分段法”求解,体现了分类讨论的思想;方法三:通过构造函数,利用函数的性质求解,体现了函数即pcos0-√3psin0=3.(2分)与方程的思想,●18河南省六市2022届高三第一次联合调研检测、选择题答案速查4i,所以z2的实部为-3.故选C.3.B【命题立意】本题难度较小,主要考查分层抽样方法的应题号123612用,体现了数学运算的核心素养,意在让多数考生得分BCD【解析】由题意,得100名学生中能说出一句或一句也说不出的人数为100-32-45=23,所以估计该校一年级的400名学1.A【命题立意】本题难度较小,主要考查集合的交集、集合元生中只能说出“二十四节气歌”中的一句或一句也说不出的素的性质,体现了数学运算的核心素养,意在让多数考生得分人数为微3=92故迹B【解析】依题意,可得B={1,4,9,16},所以A∩B={1,4}.故4.C【命题立意】本题难度较小,主要考查等比数列的定义的选A.应用,体现了数学运算的核心素养,意在让多数考生得分2.C【命题立意】本题难度较小,主要考查复数的运算、复数的模长计算及共轭复数,体现了数学运算的核心素养,意在让【解行1因为a=分4=24故数列a,为首项是,公比多数考生得分.【解析】因为复数z在复面内对应的点的坐标为(-1,2),所是2的等比数列,所以。=方×21=2,所以:111以z=-1+2i,所以|z=√(-1)2+22=√/5,z=-1-2i,z·i=(-1+2i)·i=-2-i,2=(-1+2i)2=(-1)2-4i+(2i)2=-32×1×2x4x832故选CD63卷18·数学(文)
本文标签: